
Monitoring Java Web Servers using JMX

Boro Jakimovski
Faculty of Compute Science and Engineering
Ss. Cyril and Methodius University in Skopje



Background

• FCSE Computer Center has been hosting a lot of national 
services in the past five years

• We support different kinds of software stacks
• Systems have more than 120 requests per second or 1 Mil 

requests pages per day
• Peaks of up to 500 requests per second, 2000 active sessions 

and 2 Mil requests per day
• Implemented using a scalable architecture

– Up to 8 application servers and 3 db servers



Challenge

• The software that is hosted is developed using an agile software 
process model

• Delivery of new version of the software sometimes on weekly basis
• Due to lack of good stress testing of the developed software, many 

of the under optimized implementation is not detected during 
preproduction tests

• This requires of proactive monitoring of the application servers and 
early detection mechanisms in order to mitigate the problems



How and what to monitor

• Monitoring on OS level
– CPU

• Utilization
• Load
• Interupts
• Context switches

– Memory
– Network load

• OS Level is not enough
– Very coarse grain
– Sometimes the problem is not 

visible



JMX technology
• Monitoring on Java VM level is required
• Java VM enables Java Management Extensions (JMX)
• The JMX technology provides a simple, standard way of managing resources such as 

– applications, 
– devices, and 
– services. 

• JMX technology is dynamic and can be used to monitor and manage resources as they are created, 
installed and implemented. 
– instrument Java technology-based applications (Java applications), 
– create smart agents, 
– implement distributed management middleware and managers, 
– and smoothly integrate these solutions into existing management and monitoring systems.

• JMX technology can also monitor and manage the Java Virtual Machine (Java VM).



JMX monitoring of Java VM
• The platform MXBeans are a set of MXBeans that is provided with the Java 

SE platform for monitoring and managing the Java VM and other 
components of the Java Runtime Environment (JRE). 
– memory
– threads
– class-loading system, 
– just-in-time (JIT) compilation system, 
– garbage collector, 

• Different monitoring capabilities
– Jconsole
– Remote monitoring and management tools



JConsole

Overview of memory/cpu/threads/classes Memory and Garbage collection



JConsole

Threads VM Summary



JConsole

Mbeans Read/Write values



Zabbix java gateway

• Monitoring using jConsole is for manual incident handling
• Persistent monitoring needs a more robust monitoring platform
• Zabbix is one of the best open source monitoring projects

– Enables easy host configuration management
– Extensible and flexible to address different monitoring data sources
– Powerful triggering and action engine

• Zabbix supports monitoring using the native client that enables 
monitoring of OS parameters

• For monitoring of Java services Zabbix has a Java Gateway that uses 
JMX



Zabbix JMX templates
• Zabbix templates generalize monitoring items per server type

– JMX Generic template
• Standard Java VM Mbeans

– Memory – all parts
– Jvm version
– Threads
– Uptime
– File descriptors
– Garbage collector
– Classloader

– JMX Tomcat template
• Sessions
• Connector

– Threads
– Network







Conclusion

• JMX presents a powerful Java monitoring and management 
interface
– Can be used for instrumentation in run-time verificiation/monitoring

• Information provided for both custom objects as well as Java 
VM

• Enables better understanding of Java VM
• Critical for performance/uptime of Java Application servers
• Can be used for scale up/down on Cloud instances


	Monitoring Java Web Servers using JMX
	Background
	Challenge
	How and what to monitor
	JMX technology
	JMX monitoring of Java VM
	JConsole
	JConsole
	JConsole
	Zabbix java gateway
	Zabbix JMX templates
	Foliennummer 12
	Foliennummer 13
	Conclusion

