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Background

• FCSE Computer Center has been hosting a lot of national 
services in the past five years

• We support different kinds of software stacks
• Systems have more than 120 requests per second or 1 Mil 

requests pages per day
• Peaks of up to 500 requests per second, 2000 active sessions 

and 2 Mil requests per day
• Implemented using a scalable architecture

– Up to 8 application servers and 3 db servers



Challenge

• The software that is hosted is developed using an agile software 
process model

• Delivery of new version of the software sometimes on weekly basis
• Due to lack of good stress testing of the developed software, many 

of the under optimized implementation is not detected during 
preproduction tests

• This requires of proactive monitoring of the application servers and 
early detection mechanisms in order to mitigate the problems



How and what to monitor

• Monitoring on OS level
– CPU

• Utilization
• Load
• Interupts
• Context switches

– Memory
– Network load

• OS Level is not enough
– Very coarse grain
– Sometimes the problem is not 

visible



JMX technology
• Monitoring on Java VM level is required
• Java VM enables Java Management Extensions (JMX)
• The JMX technology provides a simple, standard way of managing resources such as 

– applications, 
– devices, and 
– services. 

• JMX technology is dynamic and can be used to monitor and manage resources as they are created, 
installed and implemented. 
– instrument Java technology-based applications (Java applications), 
– create smart agents, 
– implement distributed management middleware and managers, 
– and smoothly integrate these solutions into existing management and monitoring systems.

• JMX technology can also monitor and manage the Java Virtual Machine (Java VM).



JMX monitoring of Java VM
• The platform MXBeans are a set of MXBeans that is provided with the Java 

SE platform for monitoring and managing the Java VM and other 
components of the Java Runtime Environment (JRE). 
– memory
– threads
– class-loading system, 
– just-in-time (JIT) compilation system, 
– garbage collector, 

• Different monitoring capabilities
– Jconsole
– Remote monitoring and management tools



JConsole

Overview of memory/cpu/threads/classes Memory and Garbage collection



JConsole

Threads VM Summary



JConsole

Mbeans Read/Write values



Zabbix java gateway

• Monitoring using jConsole is for manual incident handling
• Persistent monitoring needs a more robust monitoring platform
• Zabbix is one of the best open source monitoring projects

– Enables easy host configuration management
– Extensible and flexible to address different monitoring data sources
– Powerful triggering and action engine

• Zabbix supports monitoring using the native client that enables 
monitoring of OS parameters

• For monitoring of Java services Zabbix has a Java Gateway that uses 
JMX



Zabbix JMX templates
• Zabbix templates generalize monitoring items per server type

– JMX Generic template
• Standard Java VM Mbeans

– Memory – all parts
– Jvm version
– Threads
– Uptime
– File descriptors
– Garbage collector
– Classloader

– JMX Tomcat template
• Sessions
• Connector

– Threads
– Network







Conclusion

• JMX presents a powerful Java monitoring and management 
interface
– Can be used for instrumentation in run-time verificiation/monitoring

• Information provided for both custom objects as well as Java 
VM

• Enables better understanding of Java VM
• Critical for performance/uptime of Java Application servers
• Can be used for scale up/down on Cloud instances
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